If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h^2+25h-21=0
a = 1; b = 25; c = -21;
Δ = b2-4ac
Δ = 252-4·1·(-21)
Δ = 709
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-\sqrt{709}}{2*1}=\frac{-25-\sqrt{709}}{2} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+\sqrt{709}}{2*1}=\frac{-25+\sqrt{709}}{2} $
| k-20=13 | | 169=38-v | | r+70=120 | | -2(5x-3)=2(-3x-15) | | 2(n-3)=5n-27 | | (14y+1)+(9y+2)=141 | | 5x-3+15-x=24 | | 3(x+5)+1=7 | | h^2+25h-6=0 | | 0x+1=4x+2 | | -7+1=-5x+33 | | (5x+3)+(8x+8)+(2x+4)=180 | | {1}{3}(n+1)={1}{6}(3n-5) | | 2n+1=n/4+5n/3+5/3 | | g-28=60 | | 10x+x=90 | | 9r^2-17=9r | | (4x+2)+(8x+9)+(2x+15)=180 | | 2x/5-3x/10=2/6-14/10 | | -d+3d=14 | | 45=f-15 | | -21-5x=-3(2x+5) | | k−16=4 | | -6x-7=x-161 | | n(7n+10)=-5 | | 20=5+u | | 5(x+5)=17+3x | | 4(n+5)=45-n | | 3(2x-1)-2(x-3)=2x-11 | | 2x-10+9x-8=180 | | 6a+5a-10=-21 | | (3y+4)+(6y+7)=119 |